
Learning Stochastic Block Models with

Continuous Labels

April 20, 2022

Abstract

The Stochastic Block Model (SBM) is a method that allows us to model networks
such as road systems and social media connections by classifying objects into a finite
number of groups and then assuming underlying probabilistic connections between and
within groups. This paper expands the scope of SBMs by allowing for multiple contin-
uous labels for each object and also learning a function that can accurately represent
the probability that two objects are related to each other. We prove that our Continu-
ous Stochastic Block Model (CSBM) can accurately recover networks generated by the
regular SBM up to a small error factor. We also analyze and prove the performance of
CSBM recovery on some useful models that can be found in real life data, and test our
CSBM recovery on two real-life datasets which are hypothesized to fit into the CSBM
model.

Keywords: Stochastic Block Model (SBM), Random Graphs, Machine Learning, Rademacher
Complexity, Log-Likelihood

1

Contents

1 Background 3

1.1 Graph Theory . 3

1.2 Stochastic Random Variables . 4

1.3 Stochastic Block Models . 5

1.4 Proven Bounds on SBM Recovery . 7

1.5 Log Likelihood Optimization . 7

1.6 Datasets . 8

2 Results 9

2.1 Continuous Label Extension . 9

2.1.1 Implementation 1: Single Label Arbitrary Function 9

2.1.2 Implementation 2: Multiple Labels 10

2.2 Algorithm for Continuous Recovery and Correctness 11

2.3 Generalizability of Continuous Recovery Method 19

2.4 Examples on Simulated Datasets . 20

2.4.1 Dataset 1 . 20

2.4.2 Dataset 2 . 21

2.4.3 Dataset 3 . 22

2.4.4 Dataset 4 . 22

2.4.5 Dataset 5 . 23

2.4.6 Dataset 6 . 24

2.5 Examples on Real Life Data . 25

2.5.1 Political Blogs . 25

2.5.2 Word Adjacency Dataset . 26

3 Discussion 27

4 Acknowledgements 29

2

1 Background

1.1 Graph Theory

Graph theory is used in many fields to model a set of objects in which certain pairs of objects

have some connection. In a graph theory model, the underlying objects are referred to as

vertices (or nodes) and pairs of vertices that have a relationship have an edge connecting

them. Below are a few common scenarios that fit well into a graph theory model.

• Transportation Networks: This field of study looks to optimize investment in trans-

portation infrastructure by studying graphs with cities/locations as the vertices and

roads between two locations as the edges [1].

• Disease Spread : Graph theory can be used to model and understand the spread of

diseases. A graph would be generated with virus hosts (such as people) as the vertices

and interactions between pairs of hosts as the edges [2].

• Electron Interactions: Physics can use graph theory for approximating particle inter-

actions. Particles like electrons form the vertices in the graph and physical interactions

(such as the EM force) between pairs of electrons would be modeled as edges in the

graph [3].

Definition 1.1. A simple graph (network) G is defined as (V,E) where

• V is the set {v1, ..., vn} of vertices with |V |= n (n nodes)

• E is the set containing pairs of the form {vi, vj}. E ⊂ V × V with |E|= m (m edges)

Graphs can also be be expanded to include weights and directions on edges to generalize

to situations. For example, in a transportation network model there might be one-way roads

such that you can get from vertex v1 to v2 but not vice versa. In the transportation model

the weight could represent the distance between v1 and v2.

Definition 1.2. A weighted graph G is defined as (V,E) where

• V is the set {v1, ..., vn} of vertices with |V |= n (n nodes)

3

• E is the set {wi,j , (i, j) ∈ [n]× [n]} of edges with weight wi,j from vertex vi to vertex

vj with |E|= m (m edges). Note that a weight wi,j of 0 indicates no edge.

Thus a simple graph is just weighted graph G with all wi,j = 1 and also contains an

edge (vi, vj , 1) iff there is an edge (vj , vi, 1) (all edges go back and forth).

It is also useful to have an equivalent matrix representation for a graph G defined above.

The matrix representation A of G is an n × n matrix that has 0 values in all coordinates

Ai,j where there is no edge between vi and vj and has the value wi,j on all other coordinates

Ai,j . For example, if you take a 3 node graph V = (A,B,C) with just 1 edge E = (B,C)

then the equivalent matrix representation of A would be the following matrix:

Figure 1: Graph Representation of A

A B C

A 0 0 0

B 0 0 1

C 0 1 0

Figure 2: Matrix Representation of A

An important property of note for all matrices A representing simple weighted graphs

is that the diagonal will always be 0.

1.2 Stochastic Random Variables

Random variables are used to represent objects whose outcome depends on some random

phenomenon. Examples of random variables that are commonly used to model objects in

daily life are coin-flips, the weather, and change of stock prices.

Definition 1.3. A discrete random variable X is defined as variable whose output modeled

using the probability function f : Ω→ [0, 1] where

• Ω is the finite sample space of distinct possible events

• the output f(x ∈ Ω) is the probability of an event occurring

4

A simple relevant example of a discrete random variable is that of a weighted coin flip

(also referred to as Bernoulli) random variable. This variable, X, is defined on the sample

space of two events Ω = {tails, heads} where probability function f is defined as

f(x) =


p x = heads,

1− p x = tails

Often we denote the heads event as 1 and the tails event as 0.

1.3 Stochastic Block Models

One important problem in graph theory is that of community detection: you are given a set

of vertices and edges with the goal of partitioning vertices into clusters which are densely

connected with each other. Community detection is useful in classifying groups using social

networks as well as modeling information/disease spread in populations. An important

model that is lends well to community detection is the stochastic block model. A stochastic

block model is a randomly generated graph that can be used to simulate networks that are

in real life data sets.

Definition 1.4. Let n ∈ N be the number of vertices of set V = {v1, v2...vn} and k ∈

N represent the number of distinct communities. Let p = (p1, p2...pk) be the probability

distribution which represents the probability that any given node vi is in community j ∈ [k].

Let W ∈ [0, 1]k×k represent the probability matrix where Wij is a value corresponding to the

Bernoulli variable with probability Wij of an edge between an element of community i with

an element of community j. An instance of a stochastic block model generated by SBM(n,

p, W) is defined as (L, G) where each Li (the label of the node) is randomly chosen from

distribution p and G is the graph on those n nodes with edges randomly generated using W.

A simple example of a two-community (A,B) stochastic block graph is SBM(n, p,W)

where p = (.5, .5) and W =

.8 .1

.1 .8

. Note that W must be a symmetric matrix (W = W T).

Here we have a total of n vertices almost evenly partitioned into two communities (A, B)

where any two nodes within the same community (either both in A or both in B) have a

probability of .8 of having an edge between each other and there is a .1 probability of an

5

edge between any two vertices of opposite communities. Below is an example of such a

graph with n = 50 vertices.

Figure 3: Example graph of 50 nodes generated by with .8 probability of an edge between

nodes of the same community and .1 probability of an edge between nodes of different

populations. Nodes in group A are colored purple and nodes in group B are colored green

A large segment of stochastic block model theory is focused on recovery of stochastic

block models. The problem of stochastic block model recovery is as follows: you have access

to one instance G of a stochastic random graph generated using some SBM(n, p,W) and

the goal is to recover V (the community membership of each node) and W with a high

degree of accuracy. Since labels i ∈ [k] are almost always interchangeable, we define the

notion of Agreement below in order to measure the level of accuracy of various recovery

models.

Definition 1.5. Agreement between two community vectors x, y ∈ [k]n, A(x, y) is the

maximal agreement between x and any permutation of relabeling of y.

A(x, y) =
1

n
max
π∈Sk

n∑
i=1

1(xi = π(yi))

You are given an instance of (L,G) generated by SBM(n, p,W). The goal is to create a

function/algorithm F that takes in G and outputs L̂ such that L̂ and L have high agreement.

Exact recovery is a regime of SBM(n, p,W) that allows us to recovery all the labels correctly

6

with high probability and almost exact recovery is a regime of SBM(n, p,W) that allows

recovery of almost all the labels correctly with a high degree of accuracy.

Definition 1.6. Exact Recovery: P{A(L, L̂) = 1} = 1− o(1) (for a large number n we will

output the partition of labels exactly correct with probability 99%).

Definition 1.7. Almost Exact Recovery: P{A(L, L̂) = 1 − o(1)} = 1 − o(1) (for a large

number n we will output the partition of labels with 99% accuracy with probability 99%).

1.4 Proven Bounds on SBM Recovery

Many problems look at regimes of specific types of SBM(n, p,W) in which exact recovery

is feasible. For example, if all entries in W are equivalent then the graph collapses into an

instance of an Erdos-Renyi graph and it is impossible to partition the vertices. Similarly

if a graph is disconnected it also becomes impossible to label a component region with

probability more than 1 so the average degree must be Ω(log(n)). One specific set of SBMs

that are studied to determine conditions where exact recovery is possible are symmetric

SBMs on n communities. Symmetric SBMs are ones where the diagonal entries of W have

value p and the off-diagonal entries have value q. Also, the distribution of community

assignments is uniform. Thus each element has a probability p = a log(n)
n of an edge with

an element within its community and a probability q = b log(n)
n of an edge otherwise. An

interesting result that arises is that there is a threshold at which, if p and q are close enough

to each other, it becomes impossible to implement exact recovery of the labels.

Theorem 1. [4] Exact recovery in a symmetric SBM with two populations given by

SBM(n, (1/2, 1/2), a log(n)
n , b log(n)

n) is efficiently solvable if |
√
a−
√
b| >

√
2 and unsolvable

if |
√
a−
√
b| <

√
2

1.5 Log Likelihood Optimization

Some efficient algorithms in solving the SBM recovery problem approach it by trying to

optimizing the log-likelihood of “witnessing” the graph G over the set of possible priors

of labels. Mathematically this is finding a set of parameters θ such that log(P(G| θ)) is

maximized. A simple relevant example of log-likelihood optimization is having a set of

7

θ ∈ [k]n × [0, 1]k×k which is the combination of the set of labeling for assigning n nodes to

k communities concatenated with the predicted probability matrix Ŵ . Thus we can create

an approximation L̂ = F (θ1:m) by solving argmaxθ(log(P(G| θ))) and using F to output

a set of labels. There are two caveats to this approach: first you aren’t guaranteed that

A(L̂, L) ≈ 1 (the closeness of L and L̂ depends on generalization error) and the second is

that it is often computationally infeasible to sample all the possible θ that can minimize

the log likelihood.

1.6 Datasets

To test our model discusses in the results section we use the following 3 datasets.

1. Simulated Data: This dataset is very effective at analyzing what recovery looks like

in a controlled environment where we know the underlying probability matrix X.

Knowing the true dataset, we can measure the total error (in Frobenius norm or

Hellinger distance) of our recovery. Simulations will include dense SBM networks,

sparse SBM networks, assymmetric SBM networks, and networks generated with the

CSBM model described in results.

2. Blog Post Dataset [5]: This dataset looks at a total of 1490 different political blog

posts/websites and there are 16718 different directed edges between blogs where a

blog references another blog. For the purposes of this paper we treated the blog-post

graph as an undirected graph. Blog websites were classified into two groups of leaning

politically left and leaning politically right.

3. Word Adjacency Dataset [6]: This network looked at a total of 112 of the most common

nouns and adjectives in the novel “David Copperfield” by Charles Dickens. The edges

between words are tallied by the number of instances that any two words are directly

adjacent each other in the text. A representation of the unweighted graph of this

dataset is shown in the results page.

8

2 Results

2.1 Continuous Label Extension

We begin by defining the new model that builds upon the previous stochastic block model

by instead allowing for continuous labels and a function F that can assign a probability of an

edge between any two labels. To our knowledge this model has not yet been attempted. The

closest paper that approach our model is an experimental one that uses a neural network

to assign nodes to a finite number of communities by incorporating added information

including continuous attribute labels for nodes [7]. Data sets that fit this model are those

where labels can be placed on a spectrum (for example political leanings) and a relation

between two data points depends on some function (generally a distance) metric relating

two labels.

Definition 2.1. Let n ∈ N number of vertices of set V = (v1, v2...vn) such that each vi is

iid drawn from distribution Ω. Let F : (vi, vj)→ [0, 1] be an unknown function that assigns

a probability of an edge between two nodes vi and vj. Let matrix X ∈ [0, 1]n×n be defined

such that Xij = f(vi, vj) and X represents the probabilistic matrix representation of graph

that has an edge between vertex i and j with probability Xij. An instance of a continuous

stochastic block model generated by CSBM(n, Ω, F) is defined as (L, G) where each node

in L is independently drawn from distribution Ω and G is the graph on those n nodes with

edges randomly generated using F . We also define the matrix M as the {0, 1}n×n matrix

that represents where or not there is an edge between two nodes in G.

There are two main approaches to CSBM recovery. We will discuss the first and the

main issues that arise when working with the first implementation, and why we chose to

focus on the second.

2.1.1 Implementation 1: Single Label Arbitrary Function

In the first implementation we learn a set both the set of labels L̂ ∈ Rn and a general

function F̂ : R2 → R such that F̂ (L̂i, L̂j) ≈ F (Li, Lj). There are several important

things to note about this implementation. First it is impossible to recover either F or

Li on their own (or even get close). To see why consider two functions F and G such

9

that G = cF and F draws labels from Ω and G draws labels from Ω
c . It is clear that

CSBM(n,Ω, F) = CSBM(n, Ω
n , G) thus it would be impossible to distinguish the two.

Additionally F̂ cannot be an arbitrary function. If F̂ has VC dimension n2 then it

would fit {0, 1}n2
points perfectly and output a probability distribution identical to M (since

that would maximize the log likelihood function). Thus there needs to be a Rademacher

complexity argument that can bound the amount that a function class of F̂ could overfit.

There are other restrictions on F̂ . For obvious reasons (since we are considering undi-

rected graphs) F̂ (x, y) = F̂ (y, x). Another restriction on the F̂ (if we want to be able to

learn arbitrary SBM instances) is that F̂ cannot be separable, ie F̂ (x, y) 6= g(x)∗h(y). The

reasoning behind this is simple stochastic block matrix defined by the transition matrixA C

C B


where A,B,C are all block matrices that give probabilities a, b, c of any two nodes

within/between the communities having an edge. Then assume that F̂ (x, y) = g(x) ∗ h(y).

We then get that

F̂ (Xa, Xa) = g(Xa) ∗ h(Xa) = g(Xa)
2 = h(Xa)

2 = a

F̂ (Xb, Xb) = g(Xb) ∗ h(Xb) = g(Xb)
2 = h(Xb)

2 = b

which in turn forces the value for edges c between a and b to be

F̂ (Xa, Xb) = g(Xa) ∗ h(Xb) =
√
ab

but c could be arbitrary which means this model cannot capture most simple SBMs

The final complication with this model is the difficulty of interpretability. For example,

assume in the real world the probability of connection between two people on Facebook was

a function of how close they were geographically and also politically. In this model having

just one label would not provide insight that there were two major features that affect an

edge between two people.

2.1.2 Implementation 2: Multiple Labels

We learn a set both the set V of L labels per node L̂ ∈ (i{0,1}R)d×n and a function

F̂ : (i{0,1}R)2d → R such that F̂ (L̂i, L̂j) = G(
∑d

k=1 L̂ik ∗ L̂jk) ≈ F (Li, Lj). In essence this

10

is finding a set of k features for each node that can be used as a dot product to feed into

a cumulative density function G that would output a value between [0,1]. We will discuss

a natural choice for G in the correctness choice. There are several key differences between

this and the previous implementation.

• Multiple Labels: In the original implementation there was only 1 label per node. Hav-

ing multiple labels per node allows for visualization and characterization of attributes

that effect community grouping

• Fixed function definition: As opposed to learning the function F̂ the flexibility in this

model lies in the label set and uses a fixed function (sigmoid in this paper) to output

a final probability of an edge.

• Introduction of Complex Labels: One requirement of this model is allowing labels to

take on imaginary variables. This is because labels will represent eigenvectors scaled

by the square root of eigenvalues of the eigendecomposition of the true probability

matrix X. Because X is symmetric we have that eigenvalues are real (but can take

on negative values). Thus we allow labels to take on values in i{0,1}R.

The benefits of this model is that we can use linear algebraic properties and theorems to

prove error bounds on the learn-ability of the true distribution of X̂. Other benefits include

clear generalizability to the SBM problem as well as understanding underlying features

responsible for communities in graphs. The next step is to prove that this implementation

is able to solve the continuous equivalent of recovery discussed in definitions 1.6 and 1.7.

An important note here is that exact label recovery is still impossible in this scheme for

the same reasons defined in Implementation 1.

2.2 Algorithm for Continuous Recovery and Correctness

The analogous problem of CSBM recovery focuses on determining labels that are “close” to

each other iff labels are “close” in the support of Ω (this however requires F to be a metric

function). An easier form of recovery (to prove and work with) focuses on outputting a

probabilistic matrix X̂ that is “close” in distance to the true probabilistic matrix X. This

is the definition that we will focus on for this paper. First we define useful metrics of

closeness.

11

Definition 2.2. Hellinger distance dH between two Bernoulli variables with probabilities p

and q is defined as

d2
H(p, q) = (

√
p−√q)2 + (

√
1− p−

√
1− q)2

Definition 2.3. Hellinger distance dH between two matrices P,Q ∈ [0, 1]n×n of Bernoulli

variables is the average Hellinger distance at each Hellinger coordinate

d2
H(P,Q) =

1

n2

∑
i,j

d2
H(Pij , Qij)

Definition 2.4. Frobenius Norm of a matrix X is denoted as ||X||F and is calcualted as√∑
i,j

X2
i,j

In the problem of CSBM recovery you are given an instance of (V,G) generated by

CSBM(n,Ω, F) and you must output labels V̂ (where the domain of Vi is not necessarily

the same as that of V̂i) and the true probabilistic matrix X̂ for the that hold for the following

definitions of recovery.

Definition 2.5. Continuous Label Recovery: A (µ1, µ1, δ, ε) continuous recovery of a

CSBM is when µ1(L̂i, L̂j) > δ → µ2(Li, Lj) > ε with probability 1-o(1)

Definition 2.6. Probabilistic Matrix Recovery: An δ, ε probabilistic matrix recovery of a

CSBM is when d2
H(X, X̂) < δ with probability 1− ε

We proceed with this paper’s proposed implementation for Probabilistic Matrix Recov-

ery. Then we show that our method achieves strong bounds for probabilistic recovery on

instances of simple SBMs as well as useful CSBMs. The key idea is that we “learn” a set

of labels L ∈ Rn×r of r labels for each node in V (r depends on the number of significant

eigenvalues of M). Then we approximate the probability of an edge between two distinct

vertices Vi and Vj by S(Li · Lj) where S is the sigmoid function S(x) = ex

1+ex . The inverse

sigmoid function is S−1(x) = log(x
1−x).

The method of recovery used to determine the values of L is gradient descent on the log-

likelihood function LL(X̂,M) followed by projection of X̂ onto the set of rank r matrices.

The log-likelihood function of a given {0, 1}n×n output given a transition [0, 1]n×n matrix

is defined as follows

12

LL(X̂,M) = log(
∏
i,j
i 6=j

S(X̂ij)
Mij ·S(1−X̂ij)

1−Mij) =
∑
i,j
i 6=j

1Mij=1 log(S(X̂ij))+1Mij=0 log(S(1−X̂ij))

Note that we don’t include the log-likelihood values along the diagonal. For all intents

and purposes all values along the diagonal must be 0 since we assume that G is a simple

graph so a vertex cannot have an edge with itself. For simplicity in proofs we define the

equivalence relation ∼ between matrices such that X ∼ Y ⇐⇒ Xij = Yij ∀(i, j), i 6= j

Proposition 1. If M ∈ {0, 1}n×n is drawn from the matrix distribution X ∈ [0, 1]n×n then

argmax
X̂

(EM [LL(X̂,M)]) = X

Proof. Since we can decompose LL(X̂,M)) as the coordinate-wise sum of loss functions

L(x, i, j) defined below we have

EM [LL(X̂,M)) =
∑
i,j
i 6=j

E[Mij log(X̂ij) + (1−Mij) log(1− X̂ij)]

L(x, i, j) = Mij log(x) + (1−Mij) log(1− x)

argmax
x

(E[L(x, i, j)]) = Xij

argmax
X̂

(EM [LL(X̂,M))ij = Xij

Theorem 2. [8] Assume that the true probability matrix, X has rank r and ||X||∞< α.

Let M be the probability matrix drawn from X and let X̂ be the solution to the algorithms

minimization of Log loss over the set of rank r matrices. Then with probability at least

1− C1/n
1

n2
||M − M̂ ||2F ≤ 2Cα

√
r

n

Where Cα = α ∗ eα ∗ C2

For the proof it will be useful to work with the normalized log loss function LL and

establish its concentration propery.

LL(X,M) = LL(X,M)− LL(0,M)

13

The majority of this theorem relies upon the following lemma (which we will prove

afterwards).

Lemma 1. Let A be the set of n× n matrices with rank d and max coordinate value α

P(sup
X∈A
|LL(X,M)− E[LL(X,M)]|≥ C0 ∗ nα

√
dn) ≤ C1

n

Proof. First we show that using Markov’s inequality we have

P(sup
X∈A
|LL(X,M)− E[LL(X,M)] ≥ C0 ∗ nα

√
dn) =

P(sup
X∈A
|LL(X,M)− E[LL(X,M)]h ≥ (C0 ∗ nα

√
dn)h)

≤ E[supX∈A|LL(X,M)− E[LL(X,M)]h]

(C0 ∗ nα
√
dn)h

Thus we want to find a bound on the quantity E[supX∈A|LL(X,M) − E[LL(X,M)]h]

and that (combined with a proper choice of h) will give the bound stated in the Lemma.

Note that we can rewrite LL as

LL(X,M) = 2
∑
i,j
i<j

1Mij=1 log
(S(Xij)

S(0)

)
+ 1Mij=0 log

(S(1−Xij)

S(0)

)

By the symmetrization argument (lemma proven below) we have

E
[

sup
X∈A
|LL(X,M)− E[LL(X,M)]|h

]
≤ 2hE

[
sup
X∈A

∣∣∣2∑
i,j
i<j

ei,j

(
1Mij=1 log

(S(Xij)

S(0)

)
+ 1Mij=0 log

(S(1−Xij)

S(0)

))∣∣∣h]

Where ei,j are Rademacher variables in {-1,1} and the expectation is over M and choices

of ei,j . Now we bound the latter term using the contraction principle [9] since log
(
S(Xij)
S(0)

)
and log

(
S(1−Xij)
S(0)

)
are 1-lipschitz and vanish at 0. Thus the suprememum increases by at

14

most a factor of 2 when replacing those terms with Xij and −Xij respectively.

E
[

sup
X∈A
|LL(X,M)− E[LL(X,M)]|h

]
≤ 4hE

[
sup
X∈A

∣∣∣∑
i,j
i<j

ei,j

(
1Mij=1 log

(S(Xij)

S(0)

)
+ 1Mij=0 log

(S(1−Xij)

S(0)

))∣∣∣h]

≤ 4hE
[

sup
X∈A

∣∣∣2∑
i,j
i<j

ei,j

(
1Mij=1Xij − 1Mij=0Xij)

)∣∣∣h]

= 8hE
[

sup
X∈A

∣∣∣∑
i,j
i<j

ei,j

(
1Mij=1Xij − 1Mij=0Xij)

)∣∣∣h]

= 8hE
[

sup
X∈A

∣∣∣1
2
〈E �M ′, X〉

∣∣∣h]
Where E is the symmetric random Rademacher matrix with Eij = Eji = ei,j and M ′ is

matrix M with -1 values instead of 0s. For simplicity let the diagonal of E be 0s. Since the

distribution of E �M ′ is the same as that of E and the value |〈A,B〉|< ||A|| ||B||∗ (where

||B||∗ is defined as the nuclear norm of B) we can simplify the above expression.

8hE
[

sup
X∈A

∣∣∣1
2
〈E �M ′, X〉

∣∣∣h] = 4hE
[

sup
X∈A

∣∣∣〈E �M ′, X〉∣∣∣h] = 4hE
[

sup
X∈A

∣∣∣〈E,X〉∣∣∣h]
≤ 4hE

[
sup
X∈A

∣∣∣||E||h||X||h∗ ∣∣∣] ≤ 4h(αn
√
d)hE

[
||E||h

]
Now we analyze a bound on the expected value of the operator norm E[||E||h]. Observe

that the entries in E have expected value of 0 and let h ≤ 2 log n; thus we use Theorem 1.1

of [10]

(E[||E||h]) ≤ C
(

2E
[
(

n−1∑
i=1

1)
h
2

])
≤ 2Cn

h
2

Where C above is some constant. Now plugging our bounds back in we get

4h(αn
√
d)hE

[
||E||h

]
≤ (4nα

√
dn)h ∗ 2C

Which for C0 = 4, h = log(n), and C1 = 2C we prove the lemma

P(sup
X∈A
|LL(X,M)− E[LL(X,M)]|≥ C0 ∗ nα

√
dn)

≤ E[supX∈A|LL(X,M)− E[LL(X,M)]h]

(C0 ∗ nα
√
dn)h

15

≤ (4nα
√
dn)h ∗ 2C

(C0 ∗ nα
√
dn)h

=
C1

n

We can now use this lemma to bound the Hellinger distance between S(X̂) and S(X). We

introduce the notation for KL divergence D(p||q) between two Bernouli variables p and q

D(p||q) = p log(
p

q
) + (1− p) log(

1− p
1− q

)

and for two matrices P,Q we have the KL divergence defined as

D(P ||Q) =
1

n2

∑
i,j

D(Pi,j ||Qi,j)

Lemma 2. Symmetrization: for 0-mean variables Li,X , i ∈ [n] variables and for a sequence

of independent rademacher variables ei, i ∈ [n]

E
[

sup
X∈A

∣∣∣ n∑
i=1

Li,X − E[

n∑
i=1

Li,X]
∣∣∣h] ≤ 2hE

[
sup
X∈A

∣∣∣ n∑
i=1

eiLi,X

∣∣∣h]
Proof. Consider the set L′i which is an independent copy of the the set of random variables

Li. Note that since Li − L′i is mean 0 and symmetric, we have that the distribution of

Li − L′i is equal to that of the distribution of ei(Li − L′i) Now we have that using Jensen’s

since the supremum and absolute value functions are convex

E
[

sup
X∈A

∣∣∣ n∑
i=1

Li,X − E[
n∑
i=1

L′i,X]
∣∣∣h] = E

[
sup
X∈A

∣∣∣ n∑
i=1

Li,X − E[L′i,X]
∣∣∣h]

≤ E
[

sup
X∈A

∣∣∣ n∑
i=1

Li,X − L′i,X
∣∣∣h]

= E
[

sup
X∈A

∣∣∣ n∑
i=1

ei(Li,X − L′i,X)
∣∣∣h]

≤ 2hE
[

sup
X∈A

∣∣∣ n∑
i=1

eiLi,X

∣∣∣h]

Theorem 3. [8] Assume that the true probability matrix, X has rank d and ||X||∞< α.

Let M be an instance drawn from the probability matrix X and let X̂ be the solution to the

16

algorithms minimization of Log loss over the set of rank r matrices. Then with probability

at least 1− C1/n

d2
H(S(X), S(X̂)) ≤ 2Cα

√
d

n

Where Cα = 2αC0

Proof. We directly use Lemma 1 to help show that uniform concentration of log loss gives

concentration of Hellinger distance. First we see that,

E[LL(X̂,M)− LL(X,M)] = E[LL(X̂,M)− LL(0,M)− (LL(X,M)− LL(0,M))]

= E[LL(X̂,M)− LL(X,M)]

=
∑
i,j

S(Xi,j) log

(
S(X̂i,j)

S(Xi,j)

)
+ (1− S(Xi,j)) log

(
1− S(X̂i,j)

1− S(Xi,j)

)

= −n2D(S(X)||S(X̂))

Here the expectation is over M . Now assume Y ∈ A

LL(Y,M)− LL(X,M) = E[LL(Y,M)− LL(X,M)] + (LL(Y,M)− E[LL(Y,M)])

+ (LL(X,M)− E[LL(X,M)])

≤ E[LL(Y,M)− LL(X,M)] + 2 sup
Y ∈A
|LL(Y,M)− E[LL(Y,M)]|

≤ −n2D(S(X)||S(Y)) + 2 sup
Y ∈A
|LL(Y,M)− E[LL(Y,M)]|

And since by definition X̂ optimizes for log-loss we have that

0 ≤ −n2D(S(X)||S(X̂)) + 2 sup
Y ∈A
|LL(Y,M)− E[LL(Y,M)]|

Lemma one gives that with probability greater than 1− C1
n we have that

0 ≤ −n2D(S(X)||S(X̂)) + 2C0 ∗ nα
√
dn

D(S(X)||S(X̂)) ≤ 2C0α

√
d

n

We can bound KL divergence with Hellinger distance using the fact that 1− x ≤ − log x

D(p||q) = p log(
p

q
) + (1− p) log(

1− p
1− q

)

17

= 2

(
p log

(√
p

q

)
+ (1− p) log

(√
1− p
1− q

))

= −2

(
p log

(√
q

p

)
+ (1− p) log

(√
1− q
1− p

))

≥ 2p(1−
√
q

p
) + 2(1− p)(1−

√
1− q
1− p

))

= 2p− 2
√
pq + 2(1− p)−

√
(1− p)(1− q))

= 2− 2
√
pq − 2

√
(1− p)(1− q)

= (
√
p−√q)2 + (

√
1− p−

√
1− q)2 = d2

H(p, q)

Which gives that

d2
H(S(M), S(M̂)) ≤ Cα

√
d

n

Where Cα = 2α ∗ C0

We now show how Theorem 1 directly leads to Theorem 2 using the following lemma

Lemma 3. [8] Let ||X||∞, X̂∞ ≤ α Then

d2
H(S(X), S(X̂)) ≥

S′(α)||X − X̂||2F
8n2

Proof. Consider any entry (x, y) in the pair of matrices (x, y) ∈ (Xi,i, Yi,j) The Hellinger

distance between them

(
√
S(x)−

√
S(y))2 + (

√
1− S(x)−

√
1− S(y))2

≥ 1

2

(
(
√
S(x)−

√
S(y))− (

√
1− S(x)−

√
1− S(y))

)2

Which we can then use Taylor’s theorem by choosing a z between x and y such that

1

2

(
(
√
S(x)−

√
S(y))− (

√
1− S(x)−

√
1− S(y))

)2

≥ 1

2

((√
S(z)

)′
(y − x) +

(√
1− S(z)

)′
(y − x)

)2

=
1

2

(
S′(z)

2
√
S(z)

(y − x) +
S′(z)

2
√

1− S(z)
(y − x)

)2

≥ 1

8
(y − x)2(S′(z))2

(
1

S(x)
+

1

1− S(x)

)

18

=
(S′(z))2

8S(z)(1− S(z))
(y − x)2

=
S′(z)(y − x)2

8

Thus we get the lemma by summing up across all the entries and dividing by n2

2.3 Generalizability of Continuous Recovery Method

In this section we show how we can apply the theorems in the above section to prove

recovery bounds for various generated matrices.

Proposition 2. Any instance graph G of k communities generated by SBM(n, p,W) has

a (δ, ε) = (2Cα

√
k
n ,

C1
n) probabilistic matrix recovery where

Cα = 2C0 max
w∈W

(log(w)− log(1− w))

Proof. Consider the probability transition matrix S(X) generated by SBM(n, p,W). Allow

the diagonal entries to be arbitrary such that there are k distinct rows of this matrix and

thus this matrix has rank k. Let S−1(S(X)) = X be the matrix of underlying values we

are trying to learn. We have that ||X||∞= maxw∈W (log(w) − log(1 − w)) and since there

are still k distinct rows we have that rank(X) ≤ k. Thus by Theorem 3 we have that with

probability 1− C1
n

d2
H(S(X), S(X̂)) ≤ 2Cα

√
k

n

Now we show a generalization of the above theorem to a class of functions possible in the

CSBM model. First we define the degree of a 2-variable polynomial.

Definition 2.7. Consider the 2-degree polynomial F (x, y) =
∑

i,j ai,jx
iyj. The degree of a

2-variable polynomial is defined as

deg(F (x, y)) = max
i,j

ai,j 6=0

(i+ j)

Proposition 3. Consider the CSBM(n,Ω, F) where F = S ◦ G and deg(G) ≤ d. Then

we can obtain a (δ, ε) = ((d+ 1)Cα

√
1
n ,

C1
n) probabilistic matrix recovery where

Cα = 2
√

2C0 max
x,y∈Ω

(|G(x, y)|)

19

Proof. Let S−1(F (X)) = X be the matrix of underlying values we are trying to learn such

that Xi,j = G(vi, vj) and vi, vj ∈ Ω. We have that ||X||∞= maxx,y∈Ω(|G(x, y)|). Now we

bound the rank of X. Since we have deg(G) ≤ d we know that G has at most d(d+1)
2 terms

of the form ai,jx
iyj (using a simple counting argument). Now let Yij represent the matrix

corresponding to the function ai,jx
iyj . Thus X =

∑
i,j Yi,j . Now we can clearly see that

each of Yi,j have rank 1 since Yi, j = αi,j(v
i)T ∗ vj and since rank is sub-additive we have

that

rank(X) = rank(
∑
i,j

Yi,j) ≤
∑
i,j

rank(Yi,j) =
d(d+ 1)

2

. Thus by Theorem 3 we have that with probability 1− C1
n

d2
H(S(X), S(X̂)) ≤ (d+ 1)Cα

√
k

n

This is a pretty good result because it now allows us to generalize to learning arbitrary

functions by using Taylor approximation with d-degree polynomials. Thus in theory for

very large graphs where n >> d we can learn matrices generated by arbitrary polynomials

with high precision.

2.4 Examples on Simulated Datasets

We can now look at the implementation of the above algorithm described in section 2.2 on

some simulated datasets. We overall effectiveness of the model is measured by calculating

||X − X̂||2F on the datasets (note that X and X̂ probability matrices). However, we also

examine the distribution of “continuous labels” L of the points generated by looking at

the eigendecomposition of X̂ such that X̂ = QΛQT (which is made possible since X̂ is a

symmetric matrix) and the jth feature of the ith point is

Li,j =
√

Λj,j ∗Qi,j

2.4.1 Dataset 1

The first simulated dataset is a simple symmetric SBM on 1000 points with .8 probability

of an edge within clusters and .2 probability of an edge between clusters. This graph has

20

a similar appearance to that of Figure 1. Below is a plot of the log-loss function over time

along with the distribution of the rank-2 eigendecomposition labels of X̂. The value of

||X − X̂||2F= .0006 and the average deviation of Xi,j from X̂i,j is approximately .015.

Figure 4: Log loss and clustering of dataset 1. Note that there are two distinct clusters

2.4.2 Dataset 2

The second simulated dataset is a symmetric sparse SBM on 2000 points with .01 probability

of an edge within clusters and .005 probability of an edge between clusters. Below is a plot of

the log-loss function over time along with the distribution of the rank-2 eigendecomposition

labels of X̂. The value of ||X − X̂||2F= 1.6 ∗ 10−5 and the average deviation of Xi,j from

X̂i,j is approximately .002. Note that due to the result of Theorem 1 and the fact that
√

2−
√

1 <
√

2 we do not expect two completely separated clusters as in dataset 1.

Figure 5: Log loss and clustering of dataset 2. Note that there are no distinct clusters

21

2.4.3 Dataset 3

The third simulated dataset is a symmetric SBM on 1000 points with .15 probability of an

edge within clusters and .03 probability of an edge between clusters. Below is a plot of the

log-loss function over time along with the distribution of the rank-2 eigendecomposition

labels of X̂. The value of ||X − X̂||2F= .00031 and the average deviation of Xi,j from X̂i,j

is approximately .001.

Figure 6: Log loss and clustering of dataset 3. Note that we still have distinct clusters

2.4.4 Dataset 4

The fourth simulated dataset is an assymetric SBM on 1000 points where W =

.8 .2

.2 .4

.

Below is a plot of the log-loss function over time along with the distribution of the rank-2

eigendecomposition labels of X̂. The value of ||X−X̂||2F= .00073 and the average deviation

of Xi,j from X̂i,j is approximately .018.

22

Figure 7: Log loss and clustering of dataset 4. Note that we have distinct clusters of labels

2.4.5 Dataset 5

The fifth simulated dataset is an symmetric 3-community SBM on 1000 points where

W =


.8 .2 .2

.2 .8 .2

.2 .2 .8


Below is a plot of the log-loss function over time along with the distribution of the rank-3

eigendecomposition labels of X̂. The rank-3 eigendecomposition is used due to the propo-

sition 3. The value of ||X − X̂||2F= .00153 and the average deviation of Xi,j from X̂i,j is

approximately .026.

23

Figure 8: Log loss and clustering of dataset 5. Note that we 3 distinct clusters of labels

(this is easier to verify by looking at projections into 2d space)

2.4.6 Dataset 6

The sixth and final dataset is an example of a CSBM generated by the sampling vi uniformly

from [0,1] and applying the function G(x, y) = (x−y)2. Below we have the log-loss function

over time along with the distribution of the rank-3 eigendecomposition labels of X̂. The

value of

Figure 9: Log loss and clustering of dataset 6. Note the interesting distribution of labels in

3d space

24

2.5 Examples on Real Life Data

We now take a look at the effectiveness of this algorithm when applied to real-life datasets

which were described in section 1.6. For these datasets we do not have access to the

underlying probability matrix X that we can use to verify the correctness of our matrix

recovery algorithm. Instead, we analyze whether or not our labels are able to pick out

major features that should effect community formation.

2.5.1 Political Blogs

The political blog dataset looks at 1490 different political blog posts/websites and there are

16718 different directed edges between blogs where a blog references another blog. We treat

the graph as undirected and (since we have access to a spectrum of 2 communities) we try

run our algorithm using a 2-rank approximation). The results of the log-loss progression

and the distribution of the labels is shown below.

Figure 10: Log loss and clustering of Blog Post Dataset. Note that the left and right leaning

distributions are well-separated

The result is interesting, not only because it can draw a distinction between right and

left leaning blog posts, but also because it fits with the idea of a political spectrum where

far-right posts are highly unlikely to have an edge with far-left posts and there are centrists

blogs that overlap. Thus the CSBM method allows us to both categorize the political

affiliation of a blog as well as determine its extent: something which is not feasible in the

25

simple SBM scheme.

2.5.2 Word Adjacency Dataset

This dataset looked at a total of 112 of the most common nouns and adjectives in the

novel “David Copperfield” by Charles Dickens and weighted edges represent number of

instances that any two words are directly adjacent each other in the text. We simplify our

representation to have unweighted edges. A representation of the graph of this dataset is

shown below.

Figure 11: The graph of the adjacency dataset containing nouns and adjectives (an edge

between two words means they can be found next to each other in the text)

Logically this adjacency graph should be close to a bipartite graph separating the nouns

26

and adjectives since both have a very small probability of appearing next to each other

(much more likely for a noun to appear next to an adjective). Thus we expect some

community-based seperation in the distributions of the labels. The results of the log-loss

of our algorithm and the plot of the label distributions is below.

Figure 12: Log loss and clustering of Adjective/Noun Dataset. Note that the adjectives

and nouns are linearly separable which suggests a community relationship that could be

bipartite

3 Discussion

In this paper we have defined a new stochastic block model with continuous labels which we

call the CSBM model. We then went on to show that this model has a parallel definition

for recovery to the SBM model and showed that we can implement an algorithm for

Probabilistic Matrix Recovery of CSBM instances generated via SBM models and CSBM

models with polynomial functions.

We then tested the effectiveness of the implementation on simulated datasets of sparse

and dense graphs to show that the bounds hold. We then analyzed the results of our

algorithm on real-life datasets modeling connections between political blogs and between

noun-adjective pairs.

One interesting connection to explore in the future is the relationship between the rank-

d matrix output by our algorithm and the rank-d matrix output by the top d vectors of

the eigendecomposition of the original {0, 1}n×n matrix. We showed in our simulation

27

results that these two approaches were quite similar in terms of the output matrix X̂

and it would be a worthwhile effort to prove that they are “close” to each other since an

eigendecomposition can be more efficiently calculated than our gradient-descent algorithm.

28

4 Acknowledgements

I would like to thank Dr. Joe Neeman for his guidance in providing an interesting area of

research and guiding me with the main proofs in this paper. I would also like to thank my

parents and my friends for all of their support through my undergraduate process.

29

References

[1] Federico Pablo-Mart́ı and Angel Sánchez. Improving transportation networks: Effects

of population structure and decision making policies. Scientific reports, 7(1):1–9, 2017.

[2] Lauren Ancel Meyers, MEJ Newman, Michael Martin, and Stephanie Schrag. Applying

network theory to epidemics: control measures for mycoplasma pneumoniae outbreaks.

Emerging infectious diseases, 9(2):204, 2003.

[3] Ernesto Estrada. Graph and network theory in physics. a short introduction. Technical

report, 2013.

[4] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the

stochastic block model, 2014.

[5] Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 u.s.

election: Divided they blog. In Proceedings of the 3rd International Workshop on

Link Discovery, LinkKDD ’05, page 36–43, New York, NY, USA, 2005. Association for

Computing Machinery.

[6] M. E. J. Newman. Finding community structure in networks using the eigenvectors of

matrices. Physical Review E, 74(3), Sep 2006.

[7] Natalie Stanley, Thomas Bonacci, Roland Kwitt, Marc Niethammer, and Peter J.

Mucha. Stochastic block models with multiple continuous attributes, 2018.

[8] Qingqing Huang, Sham M. Kakade, Weihao Kong, and Gregory Valiant. Recovering

structured probability matrices, 2018.

[9] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and

processes. Springer Science & Business Media, 2013.

[10] Yoav Seginer. The expected norm of random matrices. Combinatorics, Probability and

Computing, 9(2):149–166, 2000.

30

