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1 Background

Ramsey’s Theorem deals with the minimum value n such that any K-coloring
of the edges of complete graph Kn contains a clique of size t where all edges are
the same color. A generalization of this min value Rk(t) is Rk(v) where v is the
k-dimensional vector (v1, v2, ..., vk), vi ≥ 1 defined by

Rk(v) = min(n) st ∀ k -colorings of Kn ∃ clique of color i of size vi

There have been several very loose bounds for the general value of a k-coloring:
the tightest in literature is found in a 1955 paper by Greenwood and Gleeson
that determined that

Rk(v1, v2, ..., vk) ≤ Rk(v1−1, v2, ..., vk)+Rk(v1, v2−1, ...vk)+...Rk(v1, v2, ...vk−1)

which provided the bound of a multinomial coefficient bound of

Rk(v) ≤ (v1 + v2...+ vk)!

v1!v2!...vk!

and for the specific case of v = (t, t, t...) this reduces to

Rk(v) ≤ (kt)!

t!k
(1)

However I now present a proof for a stricter bound of

Rk(v) ≤ k
∑k
i=1(vi−1) (2)

which reduces in the specific case of v = (t, t, t...) to

Rk(v) ≤ kk(t−1)

which is stronger than known bounds where k > e ∗ t
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2 Proof

The proof of one proceeds in a similar vein to the original, based on induction
on the sum of the elements of v, σ(v) =

∑k
i=1 vi.

Base case: For given v ∃i | vi = 1. Then a graph of one node would suffice
since any coloring would have a clique of size one where all edges (empty set)
are colored vi. This trivially fits the inequality since σ(v) ≥ k.

k(σ(v)−k) ≥ k(k−k) = 1 = Rk(v)

Inductive Step: Assume this holds true crall v where σ(v) ≤ n. Now to prove
for the case where σ(v) = n+ 1.
Let D be a k-coloring of Kn where n = kσ(v)−k, σ(v) = n+1. Pick an arbitrary
node a. Using the extended pigeon-hole principle, which states that if one has x
items to put into y boxes then ∃ a box with dxy e to this problem, we get that at

least dk
σ(v)−k−1

k e = kσ(v)−k−1 of the edges to nodes coming from a are colored
with color c ∈ [n]. Now consider the subgraph S generated by those nodes.
Define v′ as follows:

v′i =

{
vi − 1, if i = c

vi, otherwise

Thus σ(v′) = σ(v) − 1, and by the inductive hypothesis we have a subgraph S
of kσ(v

′)−k nodes and therefore it must contain a clique at least of size v′i where
all the edges are colored using color i.
There are 2 cases:

Case 1 - S contains a clique C of size vi, i 6= c with edges colored i. Then
we are done since Kn would contain a clique of size vi of color i.
Case 2 - S contains a clique C of size vi − 1, i = c with edges colored c. Then
the Graph a ∪ C would be a clique of size vi since every ∃ edge from a of color
c to every node in the clique C. This means Kn would contain a clique of size
vi of color i.
In either case, Kn contains a clique of size vi with edges colored i, completing
the proof.

3 Comparative Analysis

The advantage of this style of proof over the original one in 1955 is that induction
on the sum leads to more powerful results than an induction over all distinct
tuples of the elements. Specifically, in the case where v = (t, t, t, ...) the ratio of
the two different bounds ends up being

R =
t!k ∗ kk(t−1)

(kt)!
(3)

Now we show that R < 1 holds true for k > e ∗ t
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Analysis relies heavily on use of factorial inequality

nn

en−1
≤ n! ≤ nn+1

en−1
(4)

so

R ≤ ek−1 ∗ t
k

kk
< (

et

k
)
k

which means R < 1 when k > e ∗ t = O(t)
Interestingly, this doesn’t seem to be the strongest bound. Analysis shows

that R < 1 when k = t as well.
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